Applying Monitoring Results to Design & Adaptively Manage Middle Rio Grande Restoration Projects

US Army Corps of Engineers® Albuquerque District

Ondrea Hummel, USACE Albuquerque District July 31, 2013

Rio Grande

- Originates in the San Juan Mountains, CO
- Flows for 1,900 miles to Gulf of Mexico near Brownsville, TX.
- Supports one of the longest contiguous cottonwood gallery forests (a.k.a. "bosque") in the world.

Middle Rio Grande

- Extends 120 miles between Cochiti Dam and Elephant Butte Reservoir
- Albuquerque Reach of MRG
 - 22 miles

Diverse Riparian-Wetland Habitats

20th Century Development – Channelization, Dam Building, Diversions, GW Pumping...

Impacts to River and Associated Habitats

- Dramatic narrowing

- Flood control projects:
 - Cochiti Dam 1974
- Peak flows capped at 7,000 cfs
- Combination of flood control, channelization, surface water diversions
 - Flood inundation eliminated thru most of MRG
 - Inundation lacks energy for significant geomorphic alterations
 - Major decline in floodplain habitat diversity
 - Endangered species

	1935	1989	Change
Wet Meadow, Marsh Pond, or Lake	3,884 (9,593)	1,638 (4,046)	-2,246 (-5,547)
Scrub Shrub	13,370 (33,024)	9,304 (22,980)	-4,066 (-10,044)
Forest	8,432 (20,828)	7,812 (19,296)	-620 (-1,531)
River Channel	8,916 (22,023)	4,347 (10,736)	-4,569 (-11,287)

Exotic Plant Introductions

- Tamarisk (saltcedar)
- Russian olive
- Tree of Heaven
- Siberian elm
- Dense understory growth / ladder fuels
- Frequent Wildfires!!

Bosque Wildfire Project (2003 – 2006)

- Hazardous fuels reduction
- Herbicide treatments
- Kelner jack removal
- Experimental revegetation
 - Willow swales
 - Pole planting
 - Riparian shrubs
- Monitoring

Ecosystem Restoration at Route 66 & Albuquerque BioPark (2006 – 2010)

- Funded through Section 1135 WRDA
- Continued fuels reduction
 etc...
- Open water & wetland habitats
- Construct high-flow channels
- Create willow swales
- Revegetation

Middle Rio Grande Restoration Project (2006 – present)

- Largest of the three projects
 - General Investigation
 - \$25m funding
- Emphasis on restoration techniques to
 - promote overbank flood inundation
 - create large willow swales
- Includes revegetation to date of approximately 75,000 native riparian shrubs and trees
- Applied monitoring results from other restoration projects.

Applying Monitoring Results to Design and Adaptive Management of MRG Restoration

- Monitoring results from experimental willow swales
 - Todd Caplan, GeoSystems Analysis
- Ecological functional assessments of restoration projects
 - Steve Albert, Parametrix
- Adaptive management strategies for controlling nonnative vegetation
 - Chad McKenna, GeoSystems Analysis
- Avian response to restoration treatments
 - Trevor Fetz, Hawks Aloft

Site Attributes and Planting Techniques for Growing Dense Willow Habitat along the Middle Rio Grande, NM

Todd Caplan & Ondrea Hummel

US Army Corps of Engineers® Albuquerque District

Loss of Willow Dominated Riparian Habitat

Salix exigua – coyote willow / sandbar willow

S. gooddingii - Gooding's willow

Southwestern Willow Flycatcher

Natural Recruitment of Cottonwood-Willows

- Requires bare, moist alluvium
- Seed dispersal timed with mountain snowmelt runoff.
- Maintain root contact with moist soil
- Large-scale
 recruitment episodic

Groundwater Depth Threshold

Physical Site Manipulation

- Create high-flow channels to inundate floodplains
- Lower floodplain banklines/terraces
- Unpredictable vegetation response

Approaches with More Predictable Outcomes?

- Bosque Wildfire
 Project Area
 - 5 swales
 - ~1/4 acre
- Lower the floodplain terrace
- Excavate trenches
- Install willow cuttings & tree poles
- Backfill

• Walk away...

Variable Growth Response

Research Study

- Examine relationship between willow growth attributes and soil texture and moisture availability.
 - Hypotheses:
 - Growth attributes of coyote willow cuttings is significantly related to alluvial soil texture and water availability
 - Growth is significantly influenced by percent of fine textured soils immediately above the groundwater table.
- Apply results to design future restoration projects.

General Study Design

- 5 constructed willow swales
- 20 transects in each:
 - Plant spp. cover
 - Willow height
 - Willow stem density
- Soil samples @ 6" increments to 5' depth
 - Texture
 - Moisture content
 - Bulk density
 - Available water

Percent Area Cover & Height Significantly Related to Soil Texture p < .01

Percent Area Cover & Height Significantly Related to Plant Water Availability (AW) p < .01

Available Water 6" Depth Intervals

- RBSW-NT & RBSW-SS
 - Relatively high AW throughout 5.0 ft. profile
- RBSE-SS
 - Low AW in top 2.0 ft.
 - Relatively high AW below 2.5
 ft.
 - Indicates shallower depth to groundwater at this swale contributed to intermediate willow growth response

Conclusions

- Willow growth (canopy cover & height) significantly related to % fines and AW distribution across soil profile.
- Enables greater root biomass across depth profile \rightarrow increased above ground biomass.

Design Implications

- If coarse sand dominates soil profile, lower floodplain terrace to maximum DTW 3 feet.
- Where feasible, create backwater channel connection to promote deposition of fine sediments.

Application to Larger MRG Restoration Project

- Field Assessments
 - Soil texture
 - DTW
 - Salinity (ECe)
- Provide to ACOE
 - Plant material quantities
 - Excavation volume
 - GIS
- Construction Oversight/Support
- Eight Sites Constructed in 2012
 - 17 Acres
- Monitoring Results
 - Pending...

QUESTIONS?

ĬŀŦĬĬ